Hard
Given two sorted arrays nums1
and nums2
of size m
and n
respectively, return the median of the two sorted arrays.
The overall run time complexity should be O(log (m+n))
.
Example 1:
Input: nums1 = [1,3], nums2 = [2]
Output: 2.00000
Explanation: merged array = [1,2,3] and median is 2.
Example 2:
Input: nums1 = [1,2], nums2 = [3,4]
Output: 2.50000
Explanation: merged array = [1,2,3,4] and median is (2 + 3) / 2 = 2.5.
Example 3:
Input: nums1 = [0,0], nums2 = [0,0]
Output: 0.00000
Example 4:
Input: nums1 = [], nums2 = [1]
Output: 1.00000
Example 5:
Input: nums1 = [2], nums2 = []
Output: 2.00000
Constraints:
nums1.length == m
nums2.length == n
0 <= m <= 1000
0 <= n <= 1000
1 <= m + n <= 2000
-106 <= nums1[i], nums2[i] <= 106
-spec find_median_sorted_arrays(Nums1 :: [integer()], Nums2 :: [integer()]) -> float().
find_median_sorted_arrays(Nums1, Nums2) ->
Len = length(Nums1) + length(Nums2),
find_median_sorted_arrays(Nums1, Nums2, [], -1, 0, 0, Len rem 2, Len div 2).
find_median_sorted_arrays(_, _, [H|T], Index, _, _, Even, Index) ->
if Even =:= 1 -> H;
true -> (H + lists:nth(1, T)) / 2
end;
find_median_sorted_arrays([], [H2|T2], MyArr, Index, Indx1, Indx2, Even, Middle) ->
find_median_sorted_arrays([], T2, [H2|MyArr], Index + 1, Indx1, Indx2 + 1, Even, Middle);
find_median_sorted_arrays([H1|T1], [], MyArr, Index, Indx1, Indx2, Even, Middle) ->
find_median_sorted_arrays(T1, [], [H1|MyArr], Index + 1, Indx1, Indx2 + 1, Even, Middle);
find_median_sorted_arrays([H1|T1], [H2|T2], MyArr, Index, Indx1, Indx2, Even, Middle) when H1 < H2 ->
find_median_sorted_arrays(T1, [H2|T2], [H1|MyArr], Index + 1, Indx1 + 1, Indx2, Even, Middle);
find_median_sorted_arrays([H1|T1], [H2|T2], MyArr, Index, Indx1, Indx2, Even, Middle)->
find_median_sorted_arrays([H1|T1], T2, [H2|MyArr], Index + 1, Indx1, Indx2 + 1, Even, Middle).